GROUP BY Clause
GROUP BY Clause
1. Syntax Overview
GROUP BY expression (',' expression)*
- The
GROUP BY
clause is used to group the result set of aSELECT
statement based on the specified column values. The values of the grouping columns remain unchanged in the results, while other columns with the same grouping column values are calculated using specified aggregate functions (e.g.,COUNT
,AVG
).

2. Notes
2.1 Items in the SELECT
Clause
Items in the SELECT
clause must either include aggregate functions or consist of columns specified in the GROUP BY
clause.
Valid Example:
SELECT concat(device_id, model_id), avg(temperature)
FROM table1
GROUP BY device_id, model_id; -- valid
Result:
+-----+-----+
|_col0|_col1|
+-----+-----+
| 100A| 90.0|
| 100C| 86.0|
| 100E| 90.0|
| 101B| 85.0|
| 101D| 85.0|
| 101F| 90.0|
+-----+-----+
Total line number = 6
It costs 0.094s
Invalid Example 1:
SELECT device_id, temperature
FROM table1
GROUP BY device_id;-- invalid
Error Message:
Msg: org.apache.iotdb.jdbc.IoTDBSQLException: 701:
'temperature' must be an aggregate expression or appear in GROUP BY clause
Invalid Example 2:
SELECT device_id, avg(temperature)
FROM table1
GROUP BY model; -- invalid
Error Message:
Msg: org.apache.iotdb.jdbc.IoTDBSQLException: 701:
Column 'model' cannot be resolved
2.2 Without a GROUP BY
Clause
If there is no GROUP BY
clause, all items in the SELECT
clause must either include aggregate functions or exclude them entirely.
Valid Example:
SELECT COUNT(*), avg(temperature)
FROM table1; -- valid
Result:
+-----+-----------------+
|_col0| _col1|
+-----+-----------------+
| 18|87.33333333333333|
+-----+-----------------+
Total line number = 1
It costs 0.094s
Invalid Example:
SELECT humidity, avg(temperature) FROM table1; -- invalid
Result:
Msg: org.apache.iotdb.jdbc.IoTDBSQLException: 701:
'humidity' must be an aggregate expression or appear in GROUP BY clause
2.3 Using Constant Integers in GROUP BY
Clause
The GROUP BY
clause supports referencing SELECT
items using constant integers starting from 1. If the constant is less than 1 or exceeds the size of the SELECT
item list, an error will occur.
Example:
SELECT date_bin(1h, time), device_id, avg(temperature)
FROM table1
WHERE time >= 2024-11-27 00:00:00 and time <= 2024-11-29 00:00:00
GROUP BY 1, device_id;
Result:
+-----------------------------+---------+-----+
| _col0|device_id|_col2|
+-----------------------------+---------+-----+
|2024-11-28T08:00:00.000+08:00| 100| 85.0|
|2024-11-28T09:00:00.000+08:00| 100| null|
|2024-11-28T10:00:00.000+08:00| 100| 85.0|
|2024-11-28T11:00:00.000+08:00| 100| 88.0|
|2024-11-27T16:00:00.000+08:00| 101| 85.0|
+-----------------------------+---------+-----+
Total line number = 5
It costs 0.092s
2.4 Alias Restrictions in GROUP BY
Clause
Aliases from SELECT
items cannot be used in the GROUP BY
clause. Use the original expression instead.
Example:
SELECT date_bin(1h, time) AS hour_time, device_id, avg(temperature)
FROM table1
WHERE time >= 2024-11-27 00:00:00 and time <= 2024-11-29 00:00:00
GROUP BY date_bin(1h, time), device_id;
Result:
+-----------------------------+---------+-----+
| hour_time|device_id|_col2|
+-----------------------------+---------+-----+
|2024-11-28T08:00:00.000+08:00| 100| 85.0|
|2024-11-28T09:00:00.000+08:00| 100| null|
|2024-11-28T10:00:00.000+08:00| 100| 85.0|
|2024-11-28T11:00:00.000+08:00| 100| 88.0|
|2024-11-27T16:00:00.000+08:00| 101| 85.0|
+-----------------------------+---------+-----+
Total line number = 5
It costs 0.092s
2.5 Using Aggregate Functions with \*
Only the COUNT
function can be used with *
to calculate the total number of rows. Using *
with other aggregate functions will result in an error.
Example:
SELECT count(*) FROM table1;
Result:
+-----+
|_col0|
+-----+
| 18|
+-----+
Total line number = 1
It costs 0.047s
3. Sample Data and Usage Examples
The Example Data pagepage provides SQL statements to construct table schemas and insert data. By downloading and executing these statements in the IoTDB CLI, you can import the data into IoTDB. This data can be used to test and run the example SQL queries included in this documentation, allowing you to reproduce the described results.
Example 1: Downsampling Time-Series Data
Downsample the temperature of device 101
over the specified time range, returning one average temperature per hour:
SELECT date_bin(1h, time) AS hour_time, AVG(temperature) AS avg_temperature
FROM table1
WHERE time >= 2024-11-27 00:00:00 and time <= 2024-11-30 00:00:00
AND device_id='101'
GROUP BY 1;
Result:
+-----------------------------+---------------+
| hour_time|avg_temperature|
+-----------------------------+---------------+
|2024-11-29T10:00:00.000+08:00| 85.0|
|2024-11-27T16:00:00.000+08:00| 85.0|
+-----------------------------+---------------+
Total line number = 2
It costs 0.054s
Downsample the temperature of all devices over the past day, returning one average temperature per hour for each device:
SELECT date_bin(1h, time) AS hour_time, device_id, AVG(temperature) AS avg_temperature
FROM table1
WHERE time >= 2024-11-27 00:00:00 and time <= 2024-11-30 00:00:00
GROUP BY 1, device_id;
Result:
+-----------------------------+---------+---------------+
| hour_time|device_id|avg_temperature|
+-----------------------------+---------+---------------+
|2024-11-29T11:00:00.000+08:00| 100| null|
|2024-11-29T18:00:00.000+08:00| 100| 90.0|
|2024-11-28T08:00:00.000+08:00| 100| 85.0|
|2024-11-28T09:00:00.000+08:00| 100| null|
|2024-11-28T10:00:00.000+08:00| 100| 85.0|
|2024-11-28T11:00:00.000+08:00| 100| 88.0|
|2024-11-29T10:00:00.000+08:00| 101| 85.0|
|2024-11-27T16:00:00.000+08:00| 101| 85.0|
+-----------------------------+---------+---------------+
Total line number = 8
It costs 0.081s
For more details on the date_bin
function, refer to the Definition of Date Bin (Time Bucketing) feature documentation.
Example 2: Query the Latest Data Point for Each Device
SELECT device_id, LAST(temperature), LAST_BY(time, temperature)
FROM table1
GROUP BY device_id;
Result:
+---------+-----+-----------------------------+
|device_id|_col1| _col2|
+---------+-----+-----------------------------+
| 100| 90.0|2024-11-29T18:30:00.000+08:00|
| 101| 90.0|2024-11-30T14:30:00.000+08:00|
+---------+-----+-----------------------------+
Total line number = 2
It costs 0.078s
Example 3: Count Total Rows
Count the total number of rows for all devices:
SELECT COUNT(*) FROM table1;
Result:
+-----+
|_col0|
+-----+
| 18|
+-----+
Total line number = 1
It costs 0.060s
Count the total number of rows for each device:
SELECT device_id, COUNT(*) AS total_rows
FROM table1
GROUP BY device_id;
Result:
+---------+----------+
|device_id|total_rows|
+---------+----------+
| 100| 8|
| 101| 10|
+---------+----------+
Total line number = 2
It costs 0.060s
Example 4: Aggregate without a GROUP BY
Clause
Query the maximum temperature across all devices:
SELECT MAX(temperature)
FROM table1;
Result:
+-----+
|_col0|
+-----+
| 90.0|
+-----+
Total line number = 1
It costs 0.086s
Example 5: Aggregate Results from a Subquery
Query the combinations of plants and devices where the average temperature exceeds 80.0 over a specified time range and has at least two records:
SELECT plant_id, device_id
FROM (
SELECT date_bin(10m, time) AS time, plant_id, device_id, AVG(temperature) AS temp FROM table1 WHERE time >= 2024-11-26 00:00:00 AND time <= 2024-11-29 00:00:00
GROUP BY 1, plant_id, device_id
)
WHERE temp > 80.0
GROUP BY plant_id, device_id
HAVING COUNT(*) > 1;
Result:
+--------+---------+
|plant_id|device_id|
+--------+---------+
| 1001| 101|
| 3001| 100|
+--------+---------+
Total line number = 2
It costs 0.073s