跳至主要內容

分段分组聚合

大约 29 分钟

分段分组聚合

IoTDB支持通过GROUP BY子句对序列进行分段或者分组聚合。

分段聚合是指按照时间维度,针对同时间序列中不同数据点之间的时间关系,对数据在行的方向进行分段,每个段得到一个聚合值。目前支持时间区间分段差值分段条件分段会话分段点数分段,未来将支持更多分段方式。

分组聚合是指针对不同时间序列,在时间序列的潜在业务属性上分组,每个组包含若干条时间序列,每个组得到一个聚合值。支持按路径层级分组按序列标签分组两种分组方式。

分段聚合

时间区间分段聚合

时间区间分段聚合是一种时序数据典型的查询方式,数据以高频进行采集,需要按照一定的时间间隔进行聚合计算,如计算每天的平均气温,需要将气温的序列按天进行分段,然后计算平均值。

在 IoTDB 中,聚合查询可以通过 GROUP BY 子句指定按照时间区间分段聚合。用户可以指定聚合的时间间隔和滑动步长,相关参数如下:

  • 参数 1:时间轴显示时间窗口大小
  • 参数 2:聚合窗口的大小(必须为正数)
  • 参数 3:聚合窗口的滑动步长(可选,默认与聚合窗口大小相同)

下图中指出了这三个参数的含义:

接下来,我们给出几个典型例子:

未指定滑动步长的时间区间分段聚合查询

对应的 SQL 语句是:

select count(status), max_value(temperature) from root.ln.wf01.wt01 group by ([2017-11-01T00:00:00, 2017-11-07T23:00:00),1d);

这条查询的含义是:

由于用户没有指定滑动步长,滑动步长将会被默认设置为跟时间间隔参数相同,也就是1d

上面这个例子的第一个参数是显示窗口参数,决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面这个例子的第二个参数是划分时间轴的时间间隔参数,将1d当作划分间隔,显示窗口参数的起始时间当作分割原点,时间轴即被划分为连续的时间间隔:[0,1d), [1d, 2d), [2d, 3d) 等等。

然后系统将会用 WHERE 子句中的时间和值过滤条件以及 GROUP BY 语句中的第一个参数作为数据的联合过滤条件,获得满足所有过滤条件的数据(在这个例子里是在 [2017-11-01T00:00:00, 2017-11-07 T23:00:00) 这个时间范围的数据),并把这些数据映射到之前分割好的时间轴中(这个例子里是从 2017-11-01T00:00:00 到 2017-11-07T23:00:00:00 的每一天)

每个时间间隔窗口内都有数据,SQL 执行后的结果集如下所示:

+-----------------------------+-------------------------------+----------------------------------------+
|                         Time|count(root.ln.wf01.wt01.status)|max_value(root.ln.wf01.wt01.temperature)|
+-----------------------------+-------------------------------+----------------------------------------+
|2017-11-01T00:00:00.000+08:00|                           1440|                                    26.0|
|2017-11-02T00:00:00.000+08:00|                           1440|                                    26.0|
|2017-11-03T00:00:00.000+08:00|                           1440|                                   25.99|
|2017-11-04T00:00:00.000+08:00|                           1440|                                    26.0|
|2017-11-05T00:00:00.000+08:00|                           1440|                                    26.0|
|2017-11-06T00:00:00.000+08:00|                           1440|                                   25.99|
|2017-11-07T00:00:00.000+08:00|                           1380|                                    26.0|
+-----------------------------+-------------------------------+----------------------------------------+
Total line number = 7
It costs 0.024s

指定滑动步长的时间区间分段聚合查询

对应的 SQL 语句是:

select count(status), max_value(temperature) from root.ln.wf01.wt01 group by ([2017-11-01 00:00:00, 2017-11-07 23:00:00), 3h, 1d);

这条查询的含义是:

由于用户指定了滑动步长为1d,GROUP BY 语句执行时将会每次把时间间隔往后移动一天的步长,而不是默认的 3 小时。

也就意味着,我们想要取从 2017-11-01 到 2017-11-07 每一天的凌晨 0 点到凌晨 3 点的数据。

上面这个例子的第一个参数是显示窗口参数,决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面这个例子的第二个参数是划分时间轴的时间间隔参数,将3h当作划分间隔,显示窗口参数的起始时间当作分割原点,时间轴即被划分为连续的时间间隔:[2017-11-01T00:00:00, 2017-11-01T03:00:00), [2017-11-02T00:00:00, 2017-11-02T03:00:00), [2017-11-03T00:00:00, 2017-11-03T03:00:00) 等等。

上面这个例子的第三个参数是每次时间间隔的滑动步长。

然后系统将会用 WHERE 子句中的时间和值过滤条件以及 GROUP BY 语句中的第一个参数作为数据的联合过滤条件,获得满足所有过滤条件的数据(在这个例子里是在 [2017-11-01T00:00:00, 2017-11-07 T23:00:00) 这个时间范围的数据),并把这些数据映射到之前分割好的时间轴中(这个例子里是从 2017-11-01T00:00:00 到 2017-11-07T23:00:00:00 的每一天的凌晨 0 点到凌晨 3 点)

每个时间间隔窗口内都有数据,SQL 执行后的结果集如下所示:

+-----------------------------+-------------------------------+----------------------------------------+
|                         Time|count(root.ln.wf01.wt01.status)|max_value(root.ln.wf01.wt01.temperature)|
+-----------------------------+-------------------------------+----------------------------------------+
|2017-11-01T00:00:00.000+08:00|                            180|                                   25.98|
|2017-11-02T00:00:00.000+08:00|                            180|                                   25.98|
|2017-11-03T00:00:00.000+08:00|                            180|                                   25.96|
|2017-11-04T00:00:00.000+08:00|                            180|                                   25.96|
|2017-11-05T00:00:00.000+08:00|                            180|                                    26.0|
|2017-11-06T00:00:00.000+08:00|                            180|                                   25.85|
|2017-11-07T00:00:00.000+08:00|                            180|                                   25.99|
+-----------------------------+-------------------------------+----------------------------------------+
Total line number = 7
It costs 0.006s

滑动步长可以小于聚合窗口,此时聚合窗口之间有重叠时间(类似于一个滑动窗口)。

例如 SQL:

select count(status), max_value(temperature) from root.ln.wf01.wt01 group by ([2017-11-01 00:00:00, 2017-11-01 10:00:00), 4h, 2h);

SQL 执行后的结果集如下所示:

+-----------------------------+-------------------------------+----------------------------------------+
|                         Time|count(root.ln.wf01.wt01.status)|max_value(root.ln.wf01.wt01.temperature)|
+-----------------------------+-------------------------------+----------------------------------------+
|2017-11-01T00:00:00.000+08:00|                            180|                                   25.98|
|2017-11-01T02:00:00.000+08:00|                            180|                                   25.98|
|2017-11-01T04:00:00.000+08:00|                            180|                                   25.96|
|2017-11-01T06:00:00.000+08:00|                            180|                                   25.96|
|2017-11-01T08:00:00.000+08:00|                            180|                                    26.0|
+-----------------------------+-------------------------------+----------------------------------------+
Total line number = 5
It costs 0.006s

按照自然月份的时间区间分段聚合查询

对应的 SQL 语句是:

select count(status) from root.ln.wf01.wt01 where time > 2017-11-01T01:00:00 group by([2017-11-01T00:00:00, 2019-11-07T23:00:00), 1mo, 2mo);

这条查询的含义是:

由于用户指定了滑动步长为2mo,GROUP BY 语句执行时将会每次把时间间隔往后移动 2 个自然月的步长,而不是默认的 1 个自然月。

也就意味着,我们想要取从 2017-11-01 到 2019-11-07 每 2 个自然月的第一个月的数据。

上面这个例子的第一个参数是显示窗口参数,决定了最终的显示范围是 [2017-11-01T00:00:00, 2019-11-07T23:00:00)。

起始时间为 2017-11-01T00:00:00,滑动步长将会以起始时间作为标准按月递增,取当月的 1 号作为时间间隔的起始时间。

上面这个例子的第二个参数是划分时间轴的时间间隔参数,将1mo当作划分间隔,显示窗口参数的起始时间当作分割原点,时间轴即被划分为连续的时间间隔:[2017-11-01T00:00:00, 2017-12-01T00:00:00), [2018-02-01T00:00:00, 2018-03-01T00:00:00), [2018-05-03T00:00:00, 2018-06-01T00:00:00) 等等。

上面这个例子的第三个参数是每次时间间隔的滑动步长。

然后系统将会用 WHERE 子句中的时间和值过滤条件以及 GROUP BY 语句中的第一个参数作为数据的联合过滤条件,获得满足所有过滤条件的数据(在这个例子里是在 [2017-11-01T00:00:00, 2019-11-07T23:00:00) 这个时间范围的数据),并把这些数据映射到之前分割好的时间轴中(这个例子里是从 2017-11-01T00:00:00 到 2019-11-07T23:00:00:00 的每两个自然月的第一个月)

每个时间间隔窗口内都有数据,SQL 执行后的结果集如下所示:

+-----------------------------+-------------------------------+
|                         Time|count(root.ln.wf01.wt01.status)|
+-----------------------------+-------------------------------+
|2017-11-01T00:00:00.000+08:00|                            259|
|2018-01-01T00:00:00.000+08:00|                            250|
|2018-03-01T00:00:00.000+08:00|                            259|
|2018-05-01T00:00:00.000+08:00|                            251|
|2018-07-01T00:00:00.000+08:00|                            242|
|2018-09-01T00:00:00.000+08:00|                            225|
|2018-11-01T00:00:00.000+08:00|                            216|
|2019-01-01T00:00:00.000+08:00|                            207|
|2019-03-01T00:00:00.000+08:00|                            216|
|2019-05-01T00:00:00.000+08:00|                            207|
|2019-07-01T00:00:00.000+08:00|                            199|
|2019-09-01T00:00:00.000+08:00|                            181|
|2019-11-01T00:00:00.000+08:00|                             60|
+-----------------------------+-------------------------------+

对应的 SQL 语句是:

select count(status) from root.ln.wf01.wt01 group by([2017-10-31T00:00:00, 2019-11-07T23:00:00), 1mo, 2mo);

这条查询的含义是:

由于用户指定了滑动步长为2mo,GROUP BY 语句执行时将会每次把时间间隔往后移动 2 个自然月的步长,而不是默认的 1 个自然月。

也就意味着,我们想要取从 2017-10-31 到 2019-11-07 每 2 个自然月的第一个月的数据。

与上述示例不同的是起始时间为 2017-10-31T00:00:00,滑动步长将会以起始时间作为标准按月递增,取当月的 31 号(即最后一天)作为时间间隔的起始时间。若起始时间设置为 30 号,滑动步长会将时间间隔的起始时间设置为当月 30 号,若不存在则为最后一天。

上面这个例子的第一个参数是显示窗口参数,决定了最终的显示范围是 [2017-10-31T00:00:00, 2019-11-07T23:00:00)。

上面这个例子的第二个参数是划分时间轴的时间间隔参数,将1mo当作划分间隔,显示窗口参数的起始时间当作分割原点,时间轴即被划分为连续的时间间隔:[2017-10-31T00:00:00, 2017-11-31T00:00:00), [2018-02-31T00:00:00, 2018-03-31T00:00:00), [2018-05-31T00:00:00, 2018-06-31T00:00:00) 等等。

上面这个例子的第三个参数是每次时间间隔的滑动步长。

然后系统将会用 WHERE 子句中的时间和值过滤条件以及 GROUP BY 语句中的第一个参数作为数据的联合过滤条件,获得满足所有过滤条件的数据(在这个例子里是在 [2017-10-31T00:00:00, 2019-11-07T23:00:00) 这个时间范围的数据),并把这些数据映射到之前分割好的时间轴中(这个例子里是从 2017-10-31T00:00:00 到 2019-11-07T23:00:00:00 的每两个自然月的第一个月)

每个时间间隔窗口内都有数据,SQL 执行后的结果集如下所示:

+-----------------------------+-------------------------------+
|                         Time|count(root.ln.wf01.wt01.status)|
+-----------------------------+-------------------------------+
|2017-10-31T00:00:00.000+08:00|                            251|
|2017-12-31T00:00:00.000+08:00|                            250|
|2018-02-28T00:00:00.000+08:00|                            259|
|2018-04-30T00:00:00.000+08:00|                            250|
|2018-06-30T00:00:00.000+08:00|                            242|
|2018-08-31T00:00:00.000+08:00|                            225|
|2018-10-31T00:00:00.000+08:00|                            216|
|2018-12-31T00:00:00.000+08:00|                            208|
|2019-02-28T00:00:00.000+08:00|                            216|
|2019-04-30T00:00:00.000+08:00|                            208|
|2019-06-30T00:00:00.000+08:00|                            199|
|2019-08-31T00:00:00.000+08:00|                            181|
|2019-10-31T00:00:00.000+08:00|                             69|
+-----------------------------+-------------------------------+

左开右闭区间

每个区间的结果时间戳为区间右端点,对应的 SQL 语句是:

select count(status) from root.ln.wf01.wt01 group by ((2017-11-01T00:00:00, 2017-11-07T23:00:00],1d);

这条查询语句的时间区间是左开右闭的,结果中不会包含时间点 2017-11-01 的数据,但是会包含时间点 2017-11-07 的数据。

SQL 执行后的结果集如下所示:

+-----------------------------+-------------------------------+
|                         Time|count(root.ln.wf01.wt01.status)|
+-----------------------------+-------------------------------+
|2017-11-02T00:00:00.000+08:00|                           1440|
|2017-11-03T00:00:00.000+08:00|                           1440|
|2017-11-04T00:00:00.000+08:00|                           1440|
|2017-11-05T00:00:00.000+08:00|                           1440|
|2017-11-06T00:00:00.000+08:00|                           1440|
|2017-11-07T00:00:00.000+08:00|                           1440|
|2017-11-07T23:00:00.000+08:00|                           1380|
+-----------------------------+-------------------------------+
Total line number = 7
It costs 0.004s

差值分段聚合

IoTDB支持通过GROUP BY VARIATION语句来根据差值进行分组。GROUP BY VARIATION会将第一个点作为一个组的基准点,每个新的数据在按照给定规则与基准点进行差值运算后,
如果差值小于给定的阈值则将该新点归于同一组,否则结束当前分组,以这个新的数据为新的基准点开启新的分组。
该分组方式不会重叠,且没有固定的开始结束时间。其子句语法如下:

group by variation(controlExpression[,delta][,ignoreNull=true/false])

不同的参数含义如下

  • controlExpression

分组所参照的值,可以是查询数据中的某一列或是多列的表达式
(多列表达式计算后仍为一个值,使用多列表达式时指定的列必须都为数值列)
, 差值便是根据数据的controlExpression的差值运算。

  • delta

分组所使用的阈值,同一分组中每个点的controlExpression对应的值与该组中基准点对应值的差值都小于delta。当delta=0时,相当于一个等值分组,所有连续且expression值相同的数据将被分到一组。

  • ignoreNull

用于指定controlExpression的值为null时对数据的处理方式,当ignoreNull为false时,该null值会被视为新的值,ignoreNull为true时,则直接跳过对应的点。

delta取不同值时,controlExpression支持的返回数据类型以及当ignoreNull为false时对于null值的处理方式可以见下表:

deltacontrolExpression支持的返回类型ignoreNull=false时对于Null值的处理
delta!=0INT32、INT64、FLOAT、DOUBLE若正在维护分组的值不为null,null视为无穷大/无穷小,结束当前分组。连续的null视为差值相等的值,会被分配在同一个分组
delta=0TEXT、BINARY、INT32、INT64、FLOAT、DOUBLEnull被视为新分组中的新值,连续的null属于相同的分组

下图为差值分段的一个分段方式示意图,与组中第一个数据的控制列值的差值在delta内的控制列对应的点属于相同的分组。

groupByVariation

使用注意事项

  1. controlExpression的结果应该为唯一值,如果使用通配符拼接后出现多列,则报错。
  2. 对于一个分组,默认Time列输出分组的开始时间,查询时可以使用select __endTime的方式来使得结果输出分组的结束时间。
  3. ALIGN BY DEVICE搭配使用时会对每个device进行单独的分组操作。
  4. 当没有指定deltaignoreNull时,delta默认为0,ignoreNull默认为true。
  5. 当前暂不支持与GROUP BY LEVEL搭配使用。

使用如下的原始数据,接下来会给出几个事件分段查询的使用样例

+-----------------------------+-------+-------+-------+--------+-------+-------+
|                         Time|     s1|     s2|     s3|      s4|     s5|     s6|
+-----------------------------+-------+-------+-------+--------+-------+-------+
|1970-01-01T08:00:00.000+08:00|    4.5|    9.0|    0.0|    45.0|    9.0|   8.25|
|1970-01-01T08:00:00.010+08:00|   null|   19.0|   10.0|   145.0|   19.0|   8.25|
|1970-01-01T08:00:00.020+08:00|   24.5|   29.0|   null|   245.0|   29.0|   null|
|1970-01-01T08:00:00.030+08:00|   34.5|   null|   30.0|   345.0|   null|   null|
|1970-01-01T08:00:00.040+08:00|   44.5|   49.0|   40.0|   445.0|   49.0|   8.25|
|1970-01-01T08:00:00.050+08:00|   null|   59.0|   50.0|   545.0|   59.0|   6.25|
|1970-01-01T08:00:00.060+08:00|   64.5|   69.0|   60.0|   645.0|   69.0|   null|
|1970-01-01T08:00:00.070+08:00|   74.5|   79.0|   null|    null|   79.0|   3.25|
|1970-01-01T08:00:00.080+08:00|   84.5|   89.0|   80.0|   845.0|   89.0|   3.25|
|1970-01-01T08:00:00.090+08:00|   94.5|   99.0|   90.0|   945.0|   99.0|   3.25|
|1970-01-01T08:00:00.150+08:00|   66.5|   77.0|   90.0|   945.0|   99.0|   9.25|
+-----------------------------+-------+-------+-------+--------+-------+-------+

delta=0时的等值事件分段

使用如下sql语句

select __endTime, avg(s1), count(s2), sum(s3) from root.sg.d group by variation(s6)

得到如下的查询结果,这里忽略了s6为null的行

+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+
|                         Time|                    __endTime|avg(root.sg.d.s1)|count(root.sg.d.s2)|sum(root.sg.d.s3)|
+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+
|1970-01-01T08:00:00.000+08:00|1970-01-01T08:00:00.040+08:00|             24.5|                  3|             50.0|
|1970-01-01T08:00:00.050+08:00|1970-01-01T08:00:00.050+08:00|             null|                  1|             50.0|
|1970-01-01T08:00:00.070+08:00|1970-01-01T08:00:00.090+08:00|             84.5|                  3|            170.0|
|1970-01-01T08:00:00.150+08:00|1970-01-01T08:00:00.150+08:00|             66.5|                  1|             90.0|
+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+

当指定ignoreNull为false时,会将s6为null的数据也考虑进来

select __endTime, avg(s1), count(s2), sum(s3) from root.sg.d group by variation(s6, ignoreNull=false)

得到如下的结果

+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+
|                         Time|                    __endTime|avg(root.sg.d.s1)|count(root.sg.d.s2)|sum(root.sg.d.s3)|
+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+
|1970-01-01T08:00:00.000+08:00|1970-01-01T08:00:00.010+08:00|              4.5|                  2|             10.0|
|1970-01-01T08:00:00.020+08:00|1970-01-01T08:00:00.030+08:00|             29.5|                  1|             30.0|
|1970-01-01T08:00:00.040+08:00|1970-01-01T08:00:00.040+08:00|             44.5|                  1|             40.0|
|1970-01-01T08:00:00.050+08:00|1970-01-01T08:00:00.050+08:00|             null|                  1|             50.0|
|1970-01-01T08:00:00.060+08:00|1970-01-01T08:00:00.060+08:00|             64.5|                  1|             60.0|
|1970-01-01T08:00:00.070+08:00|1970-01-01T08:00:00.090+08:00|             84.5|                  3|            170.0|
|1970-01-01T08:00:00.150+08:00|1970-01-01T08:00:00.150+08:00|             66.5|                  1|             90.0|
+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+

delta!=0时的差值事件分段

使用如下sql语句

select __endTime, avg(s1), count(s2), sum(s3) from root.sg.d group by variation(s6, 4)

得到如下的查询结果

+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+
|                         Time|                    __endTime|avg(root.sg.d.s1)|count(root.sg.d.s2)|sum(root.sg.d.s3)|
+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+
|1970-01-01T08:00:00.000+08:00|1970-01-01T08:00:00.050+08:00|             24.5|                  4|            100.0|
|1970-01-01T08:00:00.070+08:00|1970-01-01T08:00:00.090+08:00|             84.5|                  3|            170.0|
|1970-01-01T08:00:00.150+08:00|1970-01-01T08:00:00.150+08:00|             66.5|                  1|             90.0|
+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+

group by子句中的controlExpression同样支持列的表达式

select __endTime, avg(s1), count(s2), sum(s3) from root.sg.d group by variation(s6+s5, 10)

得到如下的查询结果

+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+
|                         Time|                    __endTime|avg(root.sg.d.s1)|count(root.sg.d.s2)|sum(root.sg.d.s3)|
+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+
|1970-01-01T08:00:00.000+08:00|1970-01-01T08:00:00.010+08:00|              4.5|                  2|             10.0|
|1970-01-01T08:00:00.040+08:00|1970-01-01T08:00:00.050+08:00|             44.5|                  2|             90.0|
|1970-01-01T08:00:00.070+08:00|1970-01-01T08:00:00.080+08:00|             79.5|                  2|             80.0|
|1970-01-01T08:00:00.090+08:00|1970-01-01T08:00:00.150+08:00|             80.5|                  2|            180.0|
+-----------------------------+-----------------------------+-----------------+-------------------+-----------------+

条件分段聚合

当需要根据指定条件对数据进行筛选,并将连续的符合条件的行分为一组进行聚合运算时,可以使用GROUP BY CONDITION的分段方式;不满足给定条件的行因为不属于任何分组会被直接简单忽略。
其语法定义如下:

group by condition(predict,[keep>/>=/=/<=/<]threshold,[,ignoreNull=true/false])
  • predict

返回boolean数据类型的合法表达式,用于分组的筛选。

  • keep[>/>=/=/<=/<]threshold

keep表达式用来指定形成分组所需要连续满足predict条件的数据行数,只有行数满足keep表达式的分组才会被输出。keep表达式由一个'keep'字符串和long类型的threshold组合或者是单独的long类型数据构成。

  • ignoreNull=true/false

用于指定遇到predict为null的数据行时的处理方式,为true则跳过该行,为false则结束当前分组。

使用注意事项

  1. keep条件在查询中是必需的,但可以省略掉keep字符串给出一个long类型常数,默认为keep=该long型常数的等于条件。
  2. ignoreNull默认为true。
  3. 对于一个分组,默认Time列输出分组的开始时间,查询时可以使用select __endTime的方式来使得结果输出分组的结束时间。
  4. ALIGN BY DEVICE搭配使用时会对每个device进行单独的分组操作。
  5. 当前暂不支持与GROUP BY LEVEL搭配使用。

对于如下原始数据,下面会给出几个查询样例:

+-----------------------------+-------------------------+-------------------------------------+------------------------------------+
|                         Time|root.sg.beijing.car01.soc|root.sg.beijing.car01.charging_status|root.sg.beijing.car01.vehicle_status|
+-----------------------------+-------------------------+-------------------------------------+------------------------------------+
|1970-01-01T08:00:00.001+08:00|                     14.0|                                    1|                                   1|
|1970-01-01T08:00:00.002+08:00|                     16.0|                                    1|                                   1|
|1970-01-01T08:00:00.003+08:00|                     16.0|                                    0|                                   1|
|1970-01-01T08:00:00.004+08:00|                     16.0|                                    0|                                   1|
|1970-01-01T08:00:00.005+08:00|                     18.0|                                    1|                                   1|
|1970-01-01T08:00:00.006+08:00|                     24.0|                                    1|                                   1|
|1970-01-01T08:00:00.007+08:00|                     36.0|                                    1|                                   1|
|1970-01-01T08:00:00.008+08:00|                     36.0|                                 null|                                   1|
|1970-01-01T08:00:00.009+08:00|                     45.0|                                    1|                                   1|
|1970-01-01T08:00:00.010+08:00|                     60.0|                                    1|                                   1|
+-----------------------------+-------------------------+-------------------------------------+------------------------------------+

查询至少连续两行以上的charging_status=1的数据,sql语句如下:

select max_time(charging_status),count(vehicle_status),last_value(soc) from root.** group by condition(charging_status=1,KEEP>=2,ignoreNull=true)

得到结果如下:

+-----------------------------+-----------------------------------------------+-------------------------------------------+-------------------------------------+
|                         Time|max_time(root.sg.beijing.car01.charging_status)|count(root.sg.beijing.car01.vehicle_status)|last_value(root.sg.beijing.car01.soc)|
+-----------------------------+-----------------------------------------------+-------------------------------------------+-------------------------------------+
|1970-01-01T08:00:00.001+08:00|                                              2|                                          2|                                 16.0|
|1970-01-01T08:00:00.005+08:00|                                             10|                                          5|                                 60.0|
+-----------------------------+-----------------------------------------------+-------------------------------------------+-------------------------------------+

当设置ignoreNull为false时,遇到null值为将其视为一个不满足条件的行,会结束正在计算的分组。

select max_time(charging_status),count(vehicle_status),last_value(soc) from root.** group by condition(charging_status=1,KEEP>=2,ignoreNull=false)

得到如下结果,原先的分组被含null的行拆分:

+-----------------------------+-----------------------------------------------+-------------------------------------------+-------------------------------------+
|                         Time|max_time(root.sg.beijing.car01.charging_status)|count(root.sg.beijing.car01.vehicle_status)|last_value(root.sg.beijing.car01.soc)|
+-----------------------------+-----------------------------------------------+-------------------------------------------+-------------------------------------+
|1970-01-01T08:00:00.001+08:00|                                              2|                                          2|                                 16.0|
|1970-01-01T08:00:00.005+08:00|                                              7|                                          3|                                 36.0|
|1970-01-01T08:00:00.009+08:00|                                             10|                                          2|                                 60.0|
+-----------------------------+-----------------------------------------------+-------------------------------------------+-------------------------------------+

会话分段聚合

GROUP BY SESSION可以根据时间列的间隔进行分组,在结果集的时间列中,时间间隔小于等于设定阈值的数据会被分为一组。例如在工业场景中,设备并不总是连续运行,GROUP BY SESSION会将设备每次接入会话所产生的数据分为一组。
其语法定义如下:

group by session(timeInterval)
  • timeInterval

设定的时间差阈值,当两条数据时间列的差值大于该阈值,则会给数据创建一个新的分组。

下图为group by session下的一个分组示意图

使用注意事项

  1. 对于一个分组,默认Time列输出分组的开始时间,查询时可以使用select __endTime的方式来使得结果输出分组的结束时间。
  2. ALIGN BY DEVICE搭配使用时会对每个device进行单独的分组操作。
  3. 当前暂不支持与GROUP BY LEVEL搭配使用。

对于下面的原始数据,给出几个查询样例。

+-----------------------------+-----------------+-----------+--------+------+
|                         Time|           Device|temperature|hardware|status|
+-----------------------------+-----------------+-----------+--------+------+
|1970-01-01T08:00:01.000+08:00|root.ln.wf02.wt01|       35.7|      11| false|
|1970-01-01T08:00:02.000+08:00|root.ln.wf02.wt01|       35.8|      22|  true|
|1970-01-01T08:00:03.000+08:00|root.ln.wf02.wt01|       35.4|      33| false|
|1970-01-01T08:00:04.000+08:00|root.ln.wf02.wt01|       36.4|      44| false|
|1970-01-01T08:00:05.000+08:00|root.ln.wf02.wt01|       36.8|      55| false|
|1970-01-01T08:00:10.000+08:00|root.ln.wf02.wt01|       36.8|     110| false|
|1970-01-01T08:00:20.000+08:00|root.ln.wf02.wt01|       37.8|     220|  true|
|1970-01-01T08:00:30.000+08:00|root.ln.wf02.wt01|       37.5|     330| false|
|1970-01-01T08:00:40.000+08:00|root.ln.wf02.wt01|       37.4|     440| false|
|1970-01-01T08:00:50.000+08:00|root.ln.wf02.wt01|       37.9|     550| false|
|1970-01-01T08:01:40.000+08:00|root.ln.wf02.wt01|       38.0|     110| false|
|1970-01-01T08:02:30.000+08:00|root.ln.wf02.wt01|       38.8|     220|  true|
|1970-01-01T08:03:20.000+08:00|root.ln.wf02.wt01|       38.6|     330| false|
|1970-01-01T08:04:20.000+08:00|root.ln.wf02.wt01|       38.4|     440| false|
|1970-01-01T08:05:20.000+08:00|root.ln.wf02.wt01|       38.3|     550| false|
|1970-01-01T08:06:40.000+08:00|root.ln.wf02.wt01|       null|       0|  null|
|1970-01-01T08:07:50.000+08:00|root.ln.wf02.wt01|       null|       0|  null|
|1970-01-01T08:08:00.000+08:00|root.ln.wf02.wt01|       null|       0|  null|
|1970-01-02T08:08:01.000+08:00|root.ln.wf02.wt01|       38.2|     110| false|
|1970-01-02T08:08:02.000+08:00|root.ln.wf02.wt01|       37.5|     220|  true|
|1970-01-02T08:08:03.000+08:00|root.ln.wf02.wt01|       37.4|     330| false|
|1970-01-02T08:08:04.000+08:00|root.ln.wf02.wt01|       36.8|     440| false|
|1970-01-02T08:08:05.000+08:00|root.ln.wf02.wt01|       37.4|     550| false|
+-----------------------------+-----------------+-----------+--------+------+

可以按照不同的时间单位设定时间间隔,sql语句如下:

select __endTime,count(*) from root.** group by session(1d)

得到如下结果:

+-----------------------------+-----------------------------+------------------------------------+---------------------------------+-------------------------------+
|                         Time|                    __endTime|count(root.ln.wf02.wt01.temperature)|count(root.ln.wf02.wt01.hardware)|count(root.ln.wf02.wt01.status)|
+-----------------------------+-----------------------------+------------------------------------+---------------------------------+-------------------------------+
|1970-01-01T08:00:01.000+08:00|1970-01-01T08:08:00.000+08:00|                                  15|                               18|                             15|
|1970-01-02T08:08:01.000+08:00|1970-01-02T08:08:05.000+08:00|                                   5|                                5|                              5|
+-----------------------------+-----------------------------+------------------------------------+---------------------------------+-------------------------------+

也可以和HAVINGALIGN BY DEVICE共同使用

select __endTime,sum(hardware) from root.ln.wf02.wt01 group by session(50s) having sum(hardware)>0 align by device

得到如下结果,其中排除了sum(hardware)为0的部分

+-----------------------------+-----------------+-----------------------------+-------------+
|                         Time|           Device|                    __endTime|sum(hardware)|
+-----------------------------+-----------------+-----------------------------+-------------+
|1970-01-01T08:00:01.000+08:00|root.ln.wf02.wt01|1970-01-01T08:03:20.000+08:00|       2475.0|
|1970-01-01T08:04:20.000+08:00|root.ln.wf02.wt01|1970-01-01T08:04:20.000+08:00|        440.0|
|1970-01-01T08:05:20.000+08:00|root.ln.wf02.wt01|1970-01-01T08:05:20.000+08:00|        550.0|
|1970-01-02T08:08:01.000+08:00|root.ln.wf02.wt01|1970-01-02T08:08:05.000+08:00|       1650.0|
+-----------------------------+-----------------+-----------------------------+-------------+

点数分段聚合

GROUP BY COUNT可以根据点数分组进行聚合运算,将连续的指定数量数据点分为一组,即按照固定的点数进行分组。
其语法定义如下:

group by count(controlExpression, size[,ignoreNull=true/false])
  • controlExpression

计数参照的对象,可以是结果集的任意列或是列的表达式

  • size

一个组中数据点的数量,每size个数据点会被分到同一个组

  • ignoreNull=true/false

是否忽略controlExpression为null的数据点,当ignoreNull为true时,在计数时会跳过controlExpression结果为null的数据点

使用注意事项

  1. 对于一个分组,默认Time列输出分组的开始时间,查询时可以使用select __endTime的方式来使得结果输出分组的结束时间。
  2. ALIGN BY DEVICE搭配使用时会对每个device进行单独的分组操作。
  3. 当前暂不支持与GROUP BY LEVEL搭配使用。
  4. 当一个分组内最终的点数不满足size的数量时,不会输出该分组的结果

对于下面的原始数据,给出几个查询样例。

+-----------------------------+-----------+-----------------------+
|                         Time|root.sg.soc|root.sg.charging_status|
+-----------------------------+-----------+-----------------------+
|1970-01-01T08:00:00.001+08:00|       14.0|                      1|                                   
|1970-01-01T08:00:00.002+08:00|       16.0|                      1|                                 
|1970-01-01T08:00:00.003+08:00|       16.0|                      0|                                   
|1970-01-01T08:00:00.004+08:00|       16.0|                      0|                                   
|1970-01-01T08:00:00.005+08:00|       18.0|                      1|                                   
|1970-01-01T08:00:00.006+08:00|       24.0|                      1|                                   
|1970-01-01T08:00:00.007+08:00|       36.0|                      1|                                   
|1970-01-01T08:00:00.008+08:00|       36.0|                   null|                                   
|1970-01-01T08:00:00.009+08:00|       45.0|                      1|                                   
|1970-01-01T08:00:00.010+08:00|       60.0|                      1|
+-----------------------------+-----------+-----------------------+

sql语句如下

select count(charging_stauts), first_value(soc) from root.sg group by count(charging_status,5) 

得到如下结果,其中由于第二个1970-01-01T08:00:00.006+08:00到1970-01-01T08:00:00.010+08:00的窗口中包含四个点,不符合size = 5的条件,因此不被输出

+-----------------------------+-----------------------------+--------------------------------------+
|                         Time|                    __endTime|first_value(root.sg.beijing.car01.soc)|
+-----------------------------+-----------------------------+--------------------------------------+
|1970-01-01T08:00:00.001+08:00|1970-01-01T08:00:00.005+08:00|                                  14.0|
+-----------------------------+-----------------------------+--------------------------------------+

而当使用ignoreNull将null值也考虑进来时,可以得到两个点计数为5的窗口,sql如下

select count(charging_stauts), first_value(soc) from root.sg group by count(charging_status,5,ignoreNull=false) 

得到如下结果

+-----------------------------+-----------------------------+--------------------------------------+
|                         Time|                    __endTime|first_value(root.sg.beijing.car01.soc)|
+-----------------------------+-----------------------------+--------------------------------------+
|1970-01-01T08:00:00.001+08:00|1970-01-01T08:00:00.005+08:00|                                  14.0|
|1970-01-01T08:00:00.006+08:00|1970-01-01T08:00:00.010+08:00|                                  24.0|
+-----------------------------+-----------------------------+--------------------------------------+

分组聚合

路径层级分组聚合

在时间序列层级结构中,路径层级分组聚合查询用于对某一层级下同名的序列进行聚合查询

  • 使用 GROUP BY LEVEL = INT 来指定需要聚合的层级,并约定 ROOT 为第 0 层。若统计 "root.ln" 下所有序列则需指定 level 为 1。
  • 路径层次分组聚合查询支持使用所有内置聚合函数。对于 sumavgmin_valuemax_valueextreme 五种聚合函数,需保证所有聚合的时间序列数据类型相同。其他聚合函数没有此限制。

示例1: 不同 database 下均存在名为 status 的序列, 如 "root.ln.wf01.wt01.status", "root.ln.wf02.wt02.status", 以及 "root.sgcc.wf03.wt01.status", 如果需要统计不同 database 下 status 序列的数据点个数,使用以下查询:

select count(status) from root.** group by level = 1

运行结果为:

+-------------------------+---------------------------+
|count(root.ln.*.*.status)|count(root.sgcc.*.*.status)|
+-------------------------+---------------------------+
|                    20160|                      10080|
+-------------------------+---------------------------+
Total line number = 1
It costs 0.003s

示例2: 统计不同设备下 status 序列的数据点个数,可以规定 level = 3,

select count(status) from root.** group by level = 3

运行结果为:

+---------------------------+---------------------------+
|count(root.*.*.wt01.status)|count(root.*.*.wt02.status)|
+---------------------------+---------------------------+
|                      20160|                      10080|
+---------------------------+---------------------------+
Total line number = 1
It costs 0.003s

注意,这时会将 database lnsgcc 下名为 wt01 的设备视为同名设备聚合在一起。

示例3: 统计不同 database 下的不同设备中 status 序列的数据点个数,可以使用以下查询:

select count(status) from root.** group by level = 1, 3

运行结果为:

+----------------------------+----------------------------+------------------------------+
|count(root.ln.*.wt01.status)|count(root.ln.*.wt02.status)|count(root.sgcc.*.wt01.status)|
+----------------------------+----------------------------+------------------------------+
|                       10080|                       10080|                         10080|
+----------------------------+----------------------------+------------------------------+
Total line number = 1
It costs 0.003s

示例4: 查询所有序列下温度传感器 temperature 的最大值,可以使用下列查询语句:

select max_value(temperature) from root.** group by level = 0

运行结果:

+---------------------------------+
|max_value(root.*.*.*.temperature)|
+---------------------------------+
|                             26.0|
+---------------------------------+
Total line number = 1
It costs 0.013s

示例5: 上面的查询都是针对某一个传感器,特别地,如果想要查询某一层级下所有传感器拥有的总数据点数,则需要显式规定测点为 *

select count(*) from root.ln.** group by level = 2

运行结果:

+----------------------+----------------------+
|count(root.*.wf01.*.*)|count(root.*.wf02.*.*)|
+----------------------+----------------------+
|                 20160|                 20160|
+----------------------+----------------------+
Total line number = 1
It costs 0.013s

与时间区间分段聚合混合使用

通过定义 LEVEL 来统计指定层级下的数据点个数。

例如:

统计降采样后的数据点个数

select count(status) from root.ln.wf01.wt01 group by ((2017-11-01T00:00:00, 2017-11-07T23:00:00],1d), level=1;

结果:

+-----------------------------+-------------------------+
|                         Time|COUNT(root.ln.*.*.status)|
+-----------------------------+-------------------------+
|2017-11-02T00:00:00.000+08:00|                     1440|
|2017-11-03T00:00:00.000+08:00|                     1440|
|2017-11-04T00:00:00.000+08:00|                     1440|
|2017-11-05T00:00:00.000+08:00|                     1440|
|2017-11-06T00:00:00.000+08:00|                     1440|
|2017-11-07T00:00:00.000+08:00|                     1440|
|2017-11-07T23:00:00.000+08:00|                     1380|
+-----------------------------+-------------------------+
Total line number = 7
It costs 0.006s

加上滑动 Step 的降采样后的结果也可以汇总

select count(status) from root.ln.wf01.wt01 group by ([2017-11-01 00:00:00, 2017-11-07 23:00:00), 3h, 1d), level=1;
+-----------------------------+-------------------------+
|                         Time|COUNT(root.ln.*.*.status)|
+-----------------------------+-------------------------+
|2017-11-01T00:00:00.000+08:00|                      180|
|2017-11-02T00:00:00.000+08:00|                      180|
|2017-11-03T00:00:00.000+08:00|                      180|
|2017-11-04T00:00:00.000+08:00|                      180|
|2017-11-05T00:00:00.000+08:00|                      180|
|2017-11-06T00:00:00.000+08:00|                      180|
|2017-11-07T00:00:00.000+08:00|                      180|
+-----------------------------+-------------------------+
Total line number = 7
It costs 0.004s

标签分组聚合

IoTDB 支持通过 GROUP BY TAGS 语句根据时间序列中定义的标签的键值做分组聚合查询。

我们先在 IoTDB 中写入如下示例数据,稍后会以这些数据为例介绍标签聚合查询。

这些是某工厂 factory1 在多个城市的多个车间的设备温度数据, 时间范围为 [1000, 10000)。

时间序列路径中的设备一级是设备唯一标识。城市信息 city 和车间信息 workshop 则被建模在该设备时间序列的标签中。
其中,设备 d1d2Beijingw1 车间, d3d4Beijingw2 车间,d5d6Shanghaiw1 车间,d7Shanghaiw2 车间。
d8d9 设备目前处于调试阶段,还未被分配到具体的城市和车间,所以其相应的标签值为空值。

create database root.factory1;
create timeseries root.factory1.d1.temperature with datatype=FLOAT tags(city=Beijing, workshop=w1);
create timeseries root.factory1.d2.temperature with datatype=FLOAT tags(city=Beijing, workshop=w1);
create timeseries root.factory1.d3.temperature with datatype=FLOAT tags(city=Beijing, workshop=w2);
create timeseries root.factory1.d4.temperature with datatype=FLOAT tags(city=Beijing, workshop=w2);
create timeseries root.factory1.d5.temperature with datatype=FLOAT tags(city=Shanghai, workshop=w1);
create timeseries root.factory1.d6.temperature with datatype=FLOAT tags(city=Shanghai, workshop=w1);
create timeseries root.factory1.d7.temperature with datatype=FLOAT tags(city=Shanghai, workshop=w2);
create timeseries root.factory1.d8.temperature with datatype=FLOAT;
create timeseries root.factory1.d9.temperature with datatype=FLOAT;

insert into root.factory1.d1(time, temperature) values(1000, 104.0);
insert into root.factory1.d1(time, temperature) values(3000, 104.2);
insert into root.factory1.d1(time, temperature) values(5000, 103.3);
insert into root.factory1.d1(time, temperature) values(7000, 104.1);

insert into root.factory1.d2(time, temperature) values(1000, 104.4);
insert into root.factory1.d2(time, temperature) values(3000, 103.7);
insert into root.factory1.d2(time, temperature) values(5000, 103.3);
insert into root.factory1.d2(time, temperature) values(7000, 102.9);

insert into root.factory1.d3(time, temperature) values(1000, 103.9);
insert into root.factory1.d3(time, temperature) values(3000, 103.8);
insert into root.factory1.d3(time, temperature) values(5000, 102.7);
insert into root.factory1.d3(time, temperature) values(7000, 106.9);

insert into root.factory1.d4(time, temperature) values(1000, 103.9);
insert into root.factory1.d4(time, temperature) values(5000, 102.7);
insert into root.factory1.d4(time, temperature) values(7000, 106.9);

insert into root.factory1.d5(time, temperature) values(1000, 112.9);
insert into root.factory1.d5(time, temperature) values(7000, 113.0);

insert into root.factory1.d6(time, temperature) values(1000, 113.9);
insert into root.factory1.d6(time, temperature) values(3000, 113.3);
insert into root.factory1.d6(time, temperature) values(5000, 112.7);
insert into root.factory1.d6(time, temperature) values(7000, 112.3);

insert into root.factory1.d7(time, temperature) values(1000, 101.2);
insert into root.factory1.d7(time, temperature) values(3000, 99.3);
insert into root.factory1.d7(time, temperature) values(5000, 100.1);
insert into root.factory1.d7(time, temperature) values(7000, 99.8);

insert into root.factory1.d8(time, temperature) values(1000, 50.0);
insert into root.factory1.d8(time, temperature) values(3000, 52.1);
insert into root.factory1.d8(time, temperature) values(5000, 50.1);
insert into root.factory1.d8(time, temperature) values(7000, 50.5);

insert into root.factory1.d9(time, temperature) values(1000, 50.3);
insert into root.factory1.d9(time, temperature) values(3000, 52.1);

单标签聚合查询

用户想统计该工厂每个地区的设备的温度的平均值,可以使用如下查询语句

SELECT AVG(temperature) FROM root.factory1.** GROUP BY TAGS(city);

该查询会将具有同一个 city 标签值的时间序列的所有满足查询条件的点做平均值计算,计算结果如下

+--------+------------------+
|    city|  avg(temperature)|
+--------+------------------+
| Beijing|104.04666697184244|
|Shanghai|107.85000076293946|
|    NULL| 50.84999910990397|
+--------+------------------+
Total line number = 3
It costs 0.231s

从结果集中可以看到,和分段聚合、按层次分组聚合相比,标签聚合的查询结果的不同点是:

  1. 标签聚合查询的聚合结果不会再做去星号展开,而是将多个时间序列的数据作为一个整体进行聚合计算。
  2. 标签聚合查询除了输出聚合结果列,还会输出聚合标签的键值列。该列的列名为聚合指定的标签键,列的值则为所有查询的时间序列中出现的该标签的值。
    如果某些时间序列未设置该标签,则在键值列中有一行单独的 NULL ,代表未设置标签的所有时间序列数据的聚合结果。

多标签分组聚合查询

除了基本的单标签聚合查询外,还可以按顺序指定多个标签进行聚合计算。

例如,用户想统计每个城市的每个车间内设备的平均温度。但因为各个城市的车间名称有可能相同,所以不能直接按照 workshop 做标签聚合。必须要先按照城市,再按照车间处理。

SQL 语句如下

SELECT avg(temperature) FROM root.factory1.** GROUP BY TAGS(city, workshop);

查询结果如下

+--------+--------+------------------+
|    city|workshop|  avg(temperature)|
+--------+--------+------------------+
|    NULL|    NULL| 50.84999910990397|
|Shanghai|      w1|113.01666768391927|
| Beijing|      w2| 104.4000004359654|
|Shanghai|      w2|100.10000038146973|
| Beijing|      w1|103.73750019073486|
+--------+--------+------------------+
Total line number = 5
It costs 0.027s

从结果集中可以看到,和单标签聚合相比,多标签聚合的查询结果会根据指定的标签顺序,输出相应标签的键值列。

基于时间区间的标签聚合查询

按照时间区间聚合是时序数据库中最常用的查询需求之一。IoTDB 在基于时间区间的聚合基础上,支持进一步按照标签进行聚合查询。

例如,用户想统计时间 [1000, 10000) 范围内,每个城市每个车间中的设备每 5 秒内的平均温度。

SQL 语句如下

SELECT AVG(temperature) FROM root.factory1.** GROUP BY ([1000, 10000), 5s), TAGS(city, workshop);

查询结果如下

+-----------------------------+--------+--------+------------------+
|                         Time|    city|workshop|  avg(temperature)|
+-----------------------------+--------+--------+------------------+
|1970-01-01T08:00:01.000+08:00|    NULL|    NULL| 50.91999893188476|
|1970-01-01T08:00:01.000+08:00|Shanghai|      w1|113.20000076293945|
|1970-01-01T08:00:01.000+08:00| Beijing|      w2|             103.4|
|1970-01-01T08:00:01.000+08:00|Shanghai|      w2| 100.1999994913737|
|1970-01-01T08:00:01.000+08:00| Beijing|      w1|103.81666692097981|
|1970-01-01T08:00:06.000+08:00|    NULL|    NULL|              50.5|
|1970-01-01T08:00:06.000+08:00|Shanghai|      w1| 112.6500015258789|
|1970-01-01T08:00:06.000+08:00| Beijing|      w2| 106.9000015258789|
|1970-01-01T08:00:06.000+08:00|Shanghai|      w2| 99.80000305175781|
|1970-01-01T08:00:06.000+08:00| Beijing|      w1|             103.5|
+-----------------------------+--------+--------+------------------+

和标签聚合相比,基于时间区间的标签聚合的查询会首先按照时间区间划定聚合范围,在时间区间内部再根据指定的标签顺序,进行相应数据的聚合计算。在输出的结果集中,会包含一列时间列,该时间列值的含义和时间区间聚合查询的相同。

标签分组聚合的限制

由于标签聚合功能仍然处于开发阶段,目前有如下未实现功能。

  1. 暂不支持 HAVING 子句过滤查询结果。
  2. 暂不支持结果按照标签值排序。
  3. 暂不支持 LIMITOFFSETSLIMITSOFFSET
  4. 暂不支持 ALIGN BY DEVICE
  5. 暂不支持聚合函数内部包含表达式,例如 count(s+1)
  6. 不支持值过滤条件聚合,和分层聚合查询行为保持一致。

Copyright © 2024 The Apache Software Foundation.
Apache and the Apache feather logo are trademarks of The Apache Software Foundation

Have a question? Connect with us on QQ, WeChat, or Slack. Join the community now.

We use Google Analytics to collect anonymous, aggregated usage information.